Reg. No.:

Name:

Seventh Semester B.Tech. Degree Examination, November 2013 (2008 Scheme)

08.703 : DIGITAL SIGNAL PROCESSING (E)

Time: 3 Hours

Answer all questions.

 Test the periodicity of the following signals. If periodic, obtain the fundamental period.

i)
$$y(t) = \sin \frac{\pi}{4} t + \cos \frac{\pi}{5} t$$

ii)
$$x[n] = \sin \frac{1}{5}n$$
.

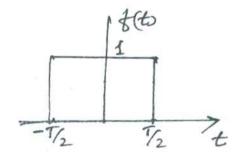
2. Obtain the DTFT of the sequence

$$x [n] = \{1, 2, 1, -2, -1\}$$

- 3. Explain the process of sampling of a continuous time signal. What is meant by aliasing in a band limited signal? How can it be avoided?
- Explain the significance of region of convergence of z transforms. How does the ROC influence the conversion of a discrete time signal from z domain to time domain.
- 5. State initial value theorem of z transforms. x[n] is a causal sequence with

$$X(z) = \frac{3z^{-1} + 2z^{-2}}{3 - z^{-1} + z^{-2}}$$
. Find x [0].

- 6. What is meant by frequency domain sampling?
- 7. Explain divide and conquer approach for the computation of DFT using FFT.
- 8. Compare IIR and FIR filters.


12

- 9. Why do we design digital filters, through analog filter transfer function rather than directly?
- Compare the impulse invariance and bilinear transformation techniques, on the design of IIR digital filters. (10x4=40 Marks)

Answer any one full question from each Module.

Module - I

 a) Differentiate between Fourier Series and Fourier Transform, Obtain the Fourier transform of the gate function given below.

- b) Define the following properties of a discrete time system. Also check for the property of the system given along with it.
 - i) Linearity: y[n] = x[n nd] nd > 0
 - ii) Time I variance : $y[n] = n (x[n])^2$

iii) Causality :
$$y[n] = \sum_{k=n0}^{n} x[k]$$
.

OR

12. a) Obtain DTFT of the sequence

$$x[n] = \frac{1}{2} \left[\left(\frac{1}{2} \right)^n + \left(\frac{1}{4} \right)^n \right] u[n]$$

10

- b) The sequence, $x[n] = \cos\left(\frac{\pi}{4}n\right)$ for $-\infty < n < \infty$ is obtained by sampling $x(t) = \cos \omega t$, $-\infty < t < \infty$ at a sample rate of 1000 samples/sec. What are the two possible values of ω that would have resulted in x [n].
- c) Determine the output sequence of a LTI system, whose impulse response is given by $h[n] = \{1, 2, 1; -1\}$ for an input sequence $x[n] = \{1, 2, 3, 1\}$.
- d) Test the stability of the system described by y[n] = x[n] + k y[n-1]. $(5\times4=20 \text{ Marks})$

Module - II

13. a) Find the z transform and region of convergence

i)
$$x [n] = n^2 u [n]$$

ii) x[n] = n for n = 0, 1, 2 and x[n] = -n for $n \ge 3$

iii)
$$x[n] = \begin{cases} (0.5)^n \cdot n & n \ge 0 \\ 0 & n < 0 \end{cases}$$

iii) $x[n] = \begin{cases} (0.5)^n \cdot n & n \ge 0 \\ 0 & n < 0 \end{cases}$ 10

b) Obtain the inverse z transform

i) $X_{(z)} = \frac{1}{1 + 2z^{-1} + 0.2z^{-2}}$ for ROC |z| > 1 and $|z| > \frac{1}{5}$.

ii)
$$X_{(z)} = \frac{z}{3z^2 - 4z + 1}$$
 for ROC $|z| > 1$, $|z| < \frac{1}{2}$ and $\frac{1}{3} \le z \le 1$.

OR

- 14. a) Develop the signal flow graph of N-point decimation In Time, Radix 2 FFT algorithm for N = 8, giving all relevant steps involved. 10
 - b) Obtain the DFT of the sequence $x [n] = \{0, 1, -1, 1, -1, 1, -1, 0\}$ using the above signal flow graph, giving all intermediate results.

Module - III

15. a) Obtain the direct form I, direct form II, cascade and parallel realization structures for the system described by

$$y[n] = 0.1 y[n-1] + 0.2 y[n-2] + 3 x[n] + 3.6 x[n-1] + 0.6 x[n-2]$$
 16

b) Obtain the realization of the linear phase FIR system given by

$$H(z) = 1 + \frac{2}{3}z^{-1} + \frac{15}{8}z^{-2} + \frac{2}{3}z^{-3} + z^{-4}$$

OR

- a) Explain the properties of any two types of window functions used in the design of FIR filters.
 - b) Design an ideal low pass filter whose desired frequency response given by

$$H_{d}(e^{j\omega}) = \begin{cases} 1 & \frac{\pi}{3} \ge \omega \ge -\frac{\pi}{3} \\ 0 & \pi \ge |\omega| \ge \frac{\pi}{3} \end{cases}$$

using Hanning Window and determine (i) the impulse response for N = 9 and (ii) H(z).

12

4

8